Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY The thermal structure of the continental crust plays a critical role in understanding its elastic and rheologic properties as well as its dynamic processes. Thermal parameter data sets on continental scales have been used to constrain the crustal thermal structure, including both the direct (e.g. temperature, heat flux and heat conductivity measured at the surface) and indirect (e.g. seismically derived Mohorovičić discontinuity (Moho) temperature, geomagnetically derived Curie depth) observations. In this study, we present a new continental scale crustal heat generation model with additional information from seismologically inferred crustal composition. Together with previous direct and indirect thermal parameter data sets in the conterminous United States, we use the new crustal heat generation model to construct a 3-D crustal temperature model under a newly developed Bayesian framework. Specifically, we first derive profiles of crustal heat generation based on an empirical geochemical relationship at 1683 locations where seismologically derived crustal composition information is available. Then for each of these locations, the average heat generation values in the upper, middle and lower crust are combined with other thermal parameters through a Markov Chain Monte-Carlo inversion for a conductive, vertically smooth temperature profile. The results, posterior distributions of temperature profiles, are used to generate a 3-D crustal thermal model with the uncertainties systematically assessed. The new temperature model overall exhibits similar patterns to that from the U.S. Geological Survey National Crustal Model, but also reduces possible biases and the model's dependence on a single thermal parameter.more » « less
-
Abstract Accurately determining the seismic structure of the continental deep crust is crucial for understanding its geological evolution and continental dynamics in general. However, traditional tools such as surface waves often face challenges in solving the trade‐offs between elastic parameters and discontinuities. In this work, we present a new approach that combines two established inversion techniques, receiver function H‐κstacking and joint inversion of surface wave dispersion and receiver function waveforms, within a Bayesian Monte Carlo (MC) framework to address these challenges. Demonstrated by synthetic tests, the new method greatly reduces trade‐offs between critical parameters, such as the deep crustal Vs, Moho depth, and crustal Vp/Vs ratio. This eliminates the need for assumptions regarding crustal Vp/Vs ratios in joint inversion, leading to a more accurate outcome. Furthermore, it improves the precision of the upper mantle velocity structure by reducing its trade‐off with Moho depth. Additional notes on the sources of bias in the results are also included. Application of the new approach to USArray stations in the Northwestern US reveals consistency with previous studies and identifies new features. Notably, we find elevated Vp/Vs ratios in the crystalline crust of regions such as coastal Oregon, suggesting potential mafic composition or fluid presence. Shallower Moho depth in the Basin and Range indicates reduced crustal support to the elevation. The uppermost mantle Vs, averaging 5 km below Moho, aligns well with the Pn‐derived Moho temperature variations, offering the potential of using Vs as an additional constraint to Moho temperature and crustal thermal properties.more » « less
-
The composition of the crust is one of the most uncertain and controversial components of continental estimates due to (1) limited direct access and (2) inconsistent indirect assessments. Here we show that by combining high-resolution shear velocity (Vs) models with newly measured with newly measured ratio of compressional wave velocity (Vp) and Vs, or Vp/Vs ratio, for the crystalline crust, a 3-D composition (SiO2 wt%) model of the continental crust can be derived with uncertainty estimates. Comparing the model with local xenolith data shows consistency at mid and lower crustal depths. The spatial patterns in bulk SiO2 content correlate with major geological provinces, including the footprints of Cenozoic and Mesozoic mafic volcanism in the western U.S., and offer new insight into the composition and evolution of the continental U.S.more » « less
-
Abstract In this study, we perform a 2‐frequency sequential receiver function stacking investigation in Southern California. The resulting Moho depths exhibit similar patterns to previous studies while the crystalline crustal Vp/Vs values show more regional variations. Most Vp/Vs variations can be explained by compositional differences. We observe a dichotomy in Moho depth, Vp/Vs, and crustal strain rates between the Peninsular Ranges and Southern San Andreas Fault system. Comparisons between strain rates, Vp/Vs, and temperature suggest that crustal compositional variations may have played a more critical role in influencing the crustal strain rate variations in the Peninsular Ranges and Southern San Andreas than temperature. The structural and compositional variations provide a new insight into the causes of the migration of the Southern San Andreas Fault system and the formation of the “Big Bend.”more » « less
An official website of the United States government
